Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species.
نویسندگان
چکیده
Rhizosphere bioremediation of polychlorinated biphenyls (PCBs) offers a potentially inexpensive approach to remediating contaminated soils that is particularly attractive in remote regions including the Arctic. We assessed the abilities of two tree species native to Alaska, Salix alaxensis (felt-leaf willow) and Picea glauca (white spruce), to promote microbial biodegradation of PCBs via the release of phytochemicals upon fine root death. Crushed fine roots, biphenyl (PCB analogue) or salicylate (willow secondary compound) were added to microcosms containing soil spiked with PCBs and resultant PCB disappearance, soil toxicity and microbial community changes were examined. After 180d, soil treated with willow root crushates showed a significantly greater PCB loss than untreated soils for some PCB congeners, including the toxic congeners, PCB 77, 105 and 169, and showed a similar PCB loss pattern (in both extent of degradation and congeners degraded) to biphenyl-treated microcosms. Neither P. glauca (white spruce) roots nor salicylate enhanced PCB loss, indicating that biostimulation is plant species specific and was not mediated by salicylate. Soil toxicity assessed using the Microtox bioassay indicated that the willow treatment resulted in a less toxic soil environment. Molecular microbial community analyses indicated that biphenyl and salicylate promoted shifts in microbial community structure and composition that differed distinctly from each other and from the crushed root treatments. The biphenyl utilizing bacterium, Cupriavidus spp. was isolated from the soil. The findings suggest that S. alaxensis may be an effective plant for rhizoremediation by altering microbial community structure, enhancing the loss of some PCB congeners and reducing the toxicity of the soil environment.
منابع مشابه
Rangeland Plants Potential for Phytoremediation of Contaminated Soils with Lead, Zinc, Cadmium and Nickel (Case Study: Rangelands around National Lead & Zinc Factory, Zanjan, Iran)
There are many remediating methods for the polluted soils but only phytoremediation is a cost effective, environmental friendly, aesthetically pleasing approach that is most suitable for many countries. The purpose of this study was to investigate the potential of native plants for phytoremediation of contaminated soils with lead, zinc, cadmium and nickel in the rangelands around National Lead ...
متن کاملPhytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions
The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...
متن کاملMultispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil.
In this study, we investigated the potential of multispecies rhizoremediation and monoculture rhizoremediation in decontaminating polycyclic aromatic hydrocarbon (PAH) contaminated soil Plant-mediated PAH dissipation was evaluated using monoplanted soil microcosms and soil microcosms vegetated with several different grass species (Brachiaria serrata and Eleusine corocana). The dissipation of na...
متن کاملSaltgrass, a potential future landscaping plant and a suitable species for desert regions: A review
Continuous desertification of arable lands mandates use of low quality/ saline water for irrigation, especially in regions experiencing water shortage. Using low quality/ saline water for irrigation imposes more stress on plants that are already under stress in these regions. Thus, a logical solution will be to find a salt/ drought-tolerant plant species that will survive/sustain under such str...
متن کاملPhytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions
The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2011